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Abstract 

We present a Chebyshev multidomain method that can solve systems of 
hyperbolic equations in conservation form on an unrestricted quadrilateral 
subdivision of a domain. Within each subdomain the solutions and fluxes 
are approximated by a staggered-grid Chebyshev method. Thus, the method 
is unstructured in terms of the subdomain decomposition, but strongly 
structured within subdomains. Communication between subdomains is 
done by a mortar method in such a way that the method is globally 
conservative. The method is applied to both linear and non-linear test 
problems and spectral accuracy is demonstrated. 
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1. Introduction 
In the first paper [l], we introduced a staggered grid Chebyshev multidomain 

method for the solution of inviscid compressible flow problems. The grid use 
analogous to the fully staggered grids used in some finite difference compu 
compressible flows, e.g. [Z]. For the staggered grid spectral method, the unknowns are 
approximated by global polynomials of degree N-1 in each space dimension, whi 
through values defined at the Chebyshev-Gauss quadrature points. 
approximated by polynomials of degree N that pass through values define 
Lobatto points. Since the Gauss points fall strictly between the Lobatto points [3], the 
result is a staggering of the solution and flux values. 

The staggered grid leads to a simpler and more flexible multidomain method than 
one based on a Lobatto grid alone, e.g. [4]. It is simpler because subdomain corners are 
not included in the approximation, so special conditions do not need to be derived for them. 
It's flexibility comes from the fact that only the normal fluxes, not the flux derivatives, 
need to be continuous across interfaces where subdomains meet, making grid generation 
less restrictive. See [ 11 for details. 

The flexibility of the method presented in [l] is still limited, however, by the 
restriction that the calculation of the unique flux along a subdomain interface requires the 
grid points to coincide there. We refer to this approximation as conforming. In general, the 
requirement that the interfaces be conforming means that subdomains must intersect along 
an entire side or at a comer point. If two subdomains intersect along a side, then 
polynomial approximation orders must be the same along the interface between them [5]. 
An example of a two subdomain conforming subdivision of a square is shown in Fig. la. 

The limits imposed by the conforming restriction make it impossible to do local 
refinement by subdividing existing subdomains, or by increasing the polynomial order 
within selected subdomains. If refinement is necessary within one subdomain, it is 
necessary to refine also its neighbors. This makes the approximation more expensive than 
necessary, since the overall grid is often refined where refinement is not needed. 

To be completely flexible, we would like the method to be able to use an arbitrary 
tiling of a domain by quadrilaterals. This would be similar to zonal fuu'te difference 
methods that have long been in use in the finite difference community, e.g. [6].  Since 
within each subdomain the strong tensor product structure of the spectral approximation 
would remain, the result would be a semi-structured method. The flexibility of the semi- 
structured method would allow commonly available block structured grid generation 
methods [7] to be used to generate the subdomains. 

The semi-structured method can be developed by loosening the restriction that the 
fluxes be continuous across an interface, giving a non-conforming patching of the 
subdomains. Fig. lb-d shows three non-conforming topologies. In the first (Fig. lb), 
which we call order refinement, the subdomains intersect along a full side, but the 
approximation order changes across the interface. The second, Fig. 1 c, shows a situation 
that comes from a subdivision of the conforming grid, Fig. la. Finally, Fig. Id shows the 
fully non-conforming case, where the interface between two subdomdns is not a full side 
of either. 
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Conforming Non-Conforming 

a b C d 

Order Subdivision Fully 
Refinement Non-Conforming 

Fig. I Conforming vs. non-conforming grids 

Non-conforming spectral domain decomposition approximations for elliptic 
problems and for the incompressible Navier-Stokes equations on grids like those shown in 
Fig. 1 first appeared in the late 1980’s [8-111. Most notable was the mortar element 
method, in which a one-dimensional polynomial function space called a mortar was defined 
along subdomain interfaces. It was with this mortar space that the patching of the 
subdomains was accomplished. Details can be found in the cited references. 

In this paper, we present a semi-structured method that uses a non-conforming 
mortar approximation for the solution of hyperbolic systems such as the Euler gas- 
dynamics equations. Interior to the subdomains, the method uses the conservative 
staggered-grid approximation presented in [ 11. The result is a fully flexible approximation: 
Subdomains can be subdivided. Polynomial orders can be adjusted within subdomains 
without affecting neighboring subdomains. There is no restriction on how the subdomains 
tile the full domain, as long as they do not overlap. 

The paper begins with a presentation of the equations, followed by a review of the 
staggered-grid conforming approximation. In Section 4, we introduce the mortar method 
for treating the subdomain interfaces. Test problems, both linear and non-linear, are 
presented in Section 5 to show that the approximation is spectrally convergent. 
Conclusions are drawn in the last section. 

2. The Equations 
In this paper we consider the approximation of hyperbolic systems in conservative 

form, 

m9 
aQ aF aG -+-+-= 
at ax ay 

where Q is the vector of solution unknowns and F(Q) and G(Q) are the advective flux 
vectors. For the Euler gas-dynamics equations in two space dimensions, 
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In (2), pe = p/(y-1)+p(u2 + v 2 ) / 2  and we assume y = 1.4. For two-dimensional 
problems, c= 0. For axisymmetric problems, we interpret x as the axial coordinate and y 
as the radial coordinate, and we set < = 1. For the gas-dynamics equations, 

r P V  1 

In the multidomain approximation [4], the region under consideration is divided 
into K non-overlapping subdomains, QK. Each subdomain is mapped individually onto the 
unit square. Under the mapping, eq. (1) becomes 

where Q = JQ and 

3. The Conforming Staggered-Grid Approximation 
The staggered-grid approximation [l] computes the solution values, Q ,  and the 

fluxes F and G on separate grids. These grids are tensor products of the Lobatto grid, Xj, 
and the Gauss grid, xj+,,2, mapped onto [0,1] 

xi = :( 1  cos(^)) j = 0,1, ..., N 

x ~ + ~ , ~  = -+ - cos( -r)) 2 j + l  j = 0,1, ..., N - 1 
2 

On the Lobatto and Gauss grids, we define two Lagrange interpolating polynomials 

and 
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We see that l j ( x >  E P ~ ( x ) ,  tirid h j + 1 , 2 ( g  E P ~ - ~ ,  where P, is 
degree less than or equal to N . 

the space of polynomials of 

The mapping of each subdomain onto the unit square is done by a static 
isoparametric transformation. Let the vector function g(s), 0 5 s 5 1 define a parametric 
curve. The polynomial of degree N that interpolates g at the Lobatto points is 

Four such polynomial curves, I?&), m c- 1,2,3,4, counted counter-clockwise9 bound each 
subdomain. As in [l], we map each subdomain onto the unit square by the linear blending 
formula 

x”(x,Y) = (1 - Y ) r I ( x )  + yr , (x)  + (1 - x ) r , ( y )  + x r 2 ( y )  
(9) -x1(1-X)(l - Y ) - X 2 X ( 1 - Y ) - X , x Y - X , ( l - X ) Y ~  

where the xj’s represent the locations of the corners of the subdomain, counted counter- 
clockwise. 

The solution unknowns are approximated at ( q + l / 2 , T + l / 2 ) ,  i , j  = OJ, ..., N -  1, 
which we will call the Gauss/Gauss points. The interpolant through these unknowns is a 
polynomial in P N - , , N - ,  = P N - l  PN-,  , 

The horizontal fluxes are approximated at the Lobatto/Gauss points 
( X i , q + l / 2 ) ,  i = 0,1, ..., N ; j  = 0,1, ..., N-1, computed from the polynomial (10) 

Finally, the vertical fluxes are approximated at the GausdLobatto points (xi+,,, , Yp ), i = 0,1, ..., N - 1; j = O,l, ..., N and are computed as 

The heart of the multidomain approximation is how the interfaces between 
subdomains are treated. In the conforming approximation (Fig. la) the interface points 
between two neighboring subdomains coincide. However, the two solutions at the 
interface need not, since they are computed independently from the interpolant through the 
Gauss/Gauss points in each subdomain. From these two values, however, a unique flux is 
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computed so that the characteristic propagation of waves is accounted for. For linear 
problems, we use a flux vector splitting. For the Euler gas-dynainics equations, we use a 
Roe solver [9] with the entropy fix to compute the normal flux at the interface from these 
two values. Inflow, outflow and wall boundaries can be treated by specifying the boundary 
conditions as the extra solution value in the Riemann solver. Details can be found in El]. 

Once the fluxes are computed, we form the semi-discrete approximation for the 
solution on the Gauss/Gauss grid. For each subdomain 

(13) 
i = 0,l ,...,If - 1 

i + l l ~ , j + 1 / 2 ’  j = O,l, ..., If-1. 
i+l lZ, j+l lZ i+ l I2 ,  j+l  12 

where the derivatives , defined as 

are computed by matrix multiplication. Equation (13) is then integrated in time by a two- 
level low-storage Runge-Kutta scheme. 

4. A Non-Conforming Mortar Approximation 
The only difference between the conforming and the non-conforming 

approximation is how the fluxes are computed along the interfaces between subdomains. 
In the conforming case (Fig. la), there are two solution values at each interface point from 
which a single flux can be computed directly. In the non-conforming cases (Fig. lc-d), 
however, the grid lines do not necessarily match along the interface, so that point by point 
transfer of information cannot be made from a subdomain to its neighbor. 

We have chosen to implement the transfer of information between subdomains by a 
mortar method [9]. The basic idea is that the mortar (the “cement”) connects neighboring 
subdomains (the “bricks”). In our method, the two-dimensional subdomains communicate 
only with an intermediate one-dimensional construct, called a mortar, not with neighboring 
subdomains (Fig. 2). In practice, a projection of the solution values is made from the 
contributing subdomain faces onto a mortar. It is on the mortar, and not on the 
subdomains themselves, that the Riemann problem is solved to give a unique flux. The 
computed flux is then projected back onto the subdomain faces. 

The use of a mortar has several advantages over direct subdomain to subdomain 
communication of solution values. First, each mortar will communicate with at most two 
subdomain faces. The flux computations on a mortar can be made independently of 
subdomains that contribute to it. Finally, the work of computing the interface fluxes is * - 
duplicated. 

The conditions for determining the solutions of the hyperbolic system along 
mortar are Werent from those in the elliptic case Ell]. Since we are computing 

the 
not 

the 
the 
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solution to the system of equations in conservation form, we set two necessary conditions 
to be satisfied by the treatment of the interfaces. The first requirement is that the 
approximation retains global conservation. This will determine the choice of the projection 
operator from the mortar back onto the subdomain faces. The second requirement we will 
t6rm the outj~ow condition. 

Q1 

Q3 

a* 

Fig. 2 Diagram of mortar communication between three subdomains that 
subdivide a square 

The outflow condition arises from the fact that, in a hyperbolic problem, waves 
should pass through an interface unaffected by downwind contributions. If the problem is 
scalar, for instance, this means that of the two solutions at an interface, the solution from 
the subdomain from which the characteristic comes (“upwind side”) is used. To affect this 
choice with a mortar, it is necessary that the solution along the upwind face be unchanged 
after projecting onto the mortar and then back onto the face. If this is true, we say that the 
approximation satisfies the outflow condition. 

We will describe mortar approximations for the three non-conforming topologies 
shown in Fig. 1. The first two topologies occur when a conforming topology is locally 
refined. The first means only that the polynomial order along a subdomain face differs 
from that of its neighbor. The second situation arises when a subdomain itself is 
subdivided without subdividing the neighbor. The last topology is the most general one, 
and does not come from an initially conforming grid. 

In the discussion that follows, we will consider only the approximation of a scalar 
problem 

The extension to a system is direct. The only difference in the case of a system is that along 
the mortar a characteristic resolution of the two solutions must be made to compute the 
flux. That mortar flux calculation is identical to the conforming case [ 11. 
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4.1 Order Refinement 

subdomains meet along a full side, but the polynomial orders of 
of the intdace are not the same. A diagram of two 
and “ R  and the mortar is shown in Fig. 3. For this topology, the 
extends the full length of both sides of the two subdomains. Note that the approximation 
needs to consider only the two subdomains whose faces coincide, since the staggered grid 
approximation does not include subdomain corners. 

The simplest case of a non-conforming approximation (Fig. lb) occurs when two 

R n H L Y R L U 
n H 

Fig. 3 Schematic of order rej?nement. (a) Subdomain to mortar projections. 
(b) Mortar to subdomain projections. 

Only the solution along the subdomain faces must be transferred to the mortar. So 
define the solutions along the faces as Uf+I12 = QL(l,T+l/2), j = 0,1, ..., ML - 1 
andUy+l12 = QR(O,q+,,,), j = 0,17 ..., M R  -1. The polynomials along the faces that 
interpolate these values are 

where 
two solutions as the polynomials (9” and #R defined by 

~[0,1]  is the local subdomain coordinate. On the mortar itself, we represent the 

To be able to satisfy the outflow condition, the polynomial order of ‘the mortar space must 
be sufficiently large to include both PML-l and So as not to require an excessive 
amount of work to compute the projections, we choose J = max(ML,MR). 
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To compute the flux for each subdomain face, a three step procedure is used. First, 
the two solutions ULyR(c) are projected onto the mortar space by projections PL+' and 
P+" to give q L y R .  The two values on the ompute a unique mortar 
flux, which is evaluated as if the mortar is a 
is projected back onto the subdomain faces b 
projection operators are chosen so that the approximation is globally conservative and 
satisfies the outflow condition. 

4.1.1 Subdomain + Mortar Projection 

A diagram of the projection of a solution onto a mortar for the order 
is shown in Fig 3a. Since we have chosen the order of the polynomial approximation on 
the mortar (the "mortar order") to be equal to the maximum order the polynomials on the 
two contributing subdomains, one of the projection operators is the identity. For 
convenience, we will assume that J = i@ so that @(e) = UR(Q and PR4' = I . 

L2 projection. Thus, we ask that 
For the projection of the lower order space onto the mortar, we use the unweighted 

j;(@" - UL)h:+l/2(adc = 0 rn = O,l, ..., J - 1 

Substitution of the def~t ions (16) and (17) into (18) gives 

2 ui+l I [j$+, 2h:+i, 2dc] = 2 $;+l I .[ J;h;+l 2h:+1 I 24, m = 0,1, ...,J - 1 
j = O  j =  0 

Now define the matrix elements 

S". mJ = rhf+l/2h:+.l,2dc 0 

1 

N m j  = 0 hy+.1/2hf+1/ 2 d ~  

so that (19) becomes SLUL = MQ, where U is the vector of discrete solution values along 
the face, and Q is the vector of solution values along the mortar. The integrals in (20) can 
be computed exactly by a Clenshaw-Curtis quadrature [3] on W+2 Lobatto points. We 
then define the projection operator by 

Since the computation of the projection operator requires the inversion of the matrix 
M, it is important to consider the conditioning of that system. We find numerically that the 
growth of the condition number in the maximum norm is weak with matrix size, 
K = 1.36J0-79. For the maximal polynomial orders that we typically use (J = 20), IC = 15. 
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4.1.2 Mortar -+ Subdomain Projection 

Once the mortar functions (17) are computed, the normal flux is calculated as 
described in [l]. This flux must then be projected back onto the subdomains (Fig. 3b). 
Let Y be the mortar contravariant flux and let F"and pR be the two subdomain 
fluxes to be computed from it. Since MR = J, we have immediately that p R  = Y. To get 
the flux on the left, we require that 

1 
Jo(p" - Y ) h ~ + , , , d ~ =  0, m = 1,2,.,,,ML -1 (22) 

Le., that the projection error is orthogonal to PML-, . Then, in matrix form, 

where 

As before, these integrals can be computed exactly by quadrature. From (23) the projection 
of the flux onto the subdomain face is 

4.2 Subdomain Refinement 

The next level of flexibility allows subdomains be subdivided locally. For 
simplicity, we consider only the case when a side is subdivided into two. The refmement 
to three or more subdomains is a simple extension of this refinement. 

When a subdomain is refmed as shown in Fig. IC, there are two possible choices 
for the mortars (Fig. 4). In the first, two mortars coincide with the "short" faces of Q2 and 
Q3. The second choice uses a single mortar that coincides with the "long" face of $2'. 

. 

sz' 

(b) 

U 

n 
Y 
U -1 
-1 

I 

2 
Q 

. . 
Q3 

I 

Fig. 4. Two mortar configurations for subdomain refinement 

9 



We choose the topology in Fig. 4a, since it is the one that can satisfy the outflow 
condition. In the second case, the projection from Q2 and Q3 onto the mortar is a 
projection of a piecewise polynomial space onto a single polynomial space. The former is 
the larger space, since it includes approximations that are discontinuous at the point where 
Q2 and Q3 meet. The outflow condition requires that the projection of face values from ln2 
and ln3 onto a mortar, and the subsequent projection back onto the rems the original 
polynomial functions. This is clearly impossible in case (4b), since the projection back 
onto the faces returns a continuous function. By using two mortars, however, as shown in 
Fig. 4a, it is possible to construct projections that recover the original polynomials on all 
three subdomains. This situation differs from the mortar element method for elliptic 
problems [l 11, which require stronger regularity conditions than hyperbolic problems. 

As before, we define the solution approximations along a face as 

M' -1 

j = O  

M z  -1 

j = O  

M3 -1 

for local subdomain coordinates E E [0,1]. We also define four mortar functions 

which are functions of the local mortar coordinate, z ~[0,1]. Finally, we define the 
variables ok and sk to be the offset and the scale of a mortar with respect to the subdomain 
GIk that contributes to it. Thus, for z ~[0,1], 

The orders of the mortar polynomials must be chosen sufficiently high so that the 
outflow condition can be satisfied. This means that the mortar order must be at least as 
large as the largest subdomain order of all contributing subdomains. Thus, we choose 
J' = max(M',M2) and J 2  = rnax(M1,M3). 

k k  = o +s  z. 

4.2.1 Subdomain -+ Mortar projections 

To compute the mortar functions (26), we also use the unweighted L2 projection. 
For each mortar E and each subdomain contributor Q, we require that 
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Then the vector of the solution values along the mortar can be computed by 

1 

Mm,j =foh~+l12h~+l12dz  m,j=O,l, ..., J - 1  (29a) 

Note that the matrices in (20) are just special cases of those in (29) with o = 0 and s = 1, 

4.2.2 Mortar + Subdomain projections 

Once the flux is computed on the mortars, as if the approximation is conforming, it 
are exactly is projected back onto the subdomain faces. The projections P= 

as described by (22)-(24). If the mortar order and the subdomain polynomial order are the 
same, the projection simplifies to the identity, and a simple copy of the flux from the mortar 
to the face can be made. 

-'-d and P"' 43 

The projection from the mortars to a subdomain is a little more complicated in the 
case where two mortars contribute to a subdomain, as is the case for Q1 in Fig. 4a. In that 
case, we seek the flux that satisfies 

0 

where 

Y?= 

If we now define 

we can write 
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k=l 

where P(k) = M-'S(k' is the projection matrix. 

4.3 Fully Non-Conforming Interfaces 

The final topology, shown in Fig. Id, is characterized by subdomains whose faces 
only partially overlap. In order to satisfy the outflow condition, we choose the mortars to 
cover the intersections of two subdomain faces, as shown in Fig. 5. We note again that 
this choice is different than the choice one must make in the elliptic case [9], where the 
concept of a supermortar was introduced to give the solution sufficient regularity. 

Fig. 5. Mortar topology for a fully non-conforming approximation 

In practice, this situation is handled exactly as in subdivision. The mortar orders 
are chosen to be the maximum of the orders of the polynomials of the contributing 
subdomains. The computation of the mortar functions is done by eq. (28) for all the 
subdomains, since none of the projection operators is the identity. Once the mortar flux is 
computed along each mortar, it is projected back onto the subdomain faces by (33), where 
the upper limit on the sum is equal to the number of mortars that contribute to the 
subdomain face. 

4.4 Properties of the Order Refinement Projections 

The use of the unweighted L2 projections gives the mortar approximation two 
desired properties: The approximation is globally conservative and the outflow condition is 
satisfied. 

It is simplest to show conservation for order refinement. In that case, we need only 
to show that 

This is because with 5 = 0 the integration of eq. (13) over all subdomains leaves only 
integrals of the flux over the boundaries. Conservation follows if the interface flux 
contributions cancel. By design, 
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(FL -Y,v) = 0 Vv EP,.-~ and (35a) 

(F" - Y,w) = 0 v w  E P,R-l. (35b) 

where (u,v) = I uvdg. Since 1 c P,R-l = PJ-l, the result follows. A similar 
argument can be constructed for subdomain refinement and fully non-conforming 
interfaces. We remark that (34) would not hold if the mortar fluxes are merely interpolated 
to the subdomain faces fi-om the mortar. 

The outflow condition is also satisfied by our choice of projections. Again, it is 
simplest to show this for order refinement. In terms of the projection operators, the 
outflow condition means that PE->LPL-tB = I. If we call Q, = PLjEU and U* = 
this is true if U = U*. By construction, 

1 

0 

(U - Q,,v) = 0 vv E PJ-l (36a) 

and 

(U * -Q,,w) = 0 v w  E P,L-l C PJ-l (36b) 

Then ( U - Q , , ~ ) = O ' ~ ~ E P , , - ~ ,  fi-omwhichweseethat (U-U*,w)=O \ d w ~ P , ~ - ~ .  
The result follows from the fact that U - U* E P,. 

For the subdomain refinement case, satisfaction of the outflow condition requires 
that the projection operators satisfy the relations 

psl-tn'pn'-tE' + p E 2  +n'pnl +E2 = I  

p E 1  -tn2pn2-tE' = I  

p 8 2 4 2 3 p S 2 3 - t E 2  = I  

which can be shown by arguments similar to that above. 

(37) 

4.5 Mortar Algorithm 

The algorithm for the non-conforming approximation is the same as the conforming 
one, except for the manner in which the interface fluxes are computed. At the start of a 
calculation, after the grid connections, mortar positions, offsets and scales are computed, 
the projection matrices are computed and stored. Then at each stage of the time integration, 
we use the following algorithm based on the staggered grid method of [ 11: 

Algorithm I. (Non-Conf orming Staggered Grid) 

1.Interpolate the Gauss/Gauss point solution values 
to the Gauss/Lobatto and the Lobatto/Gauss 
points. 

2,Compute the interior point fluxes F and G from 
the interpolated values. 
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3.Compute the Interface Fluxes: 
(a)Project the interface solution values onto the 
mortars. 
(b)Compute the mortar fluxes. 
(c)Project the mortar fluxes back onto the 
subdomain faces. 

$.Compute the boundary fluxes by applying the 
boundary conditions. 

5.Compute spatial derivatives at the Gauss/Gauss 
points. 

6.Update the solution at the Gauss/Gauss points. 
7.Repeat Steps 1-6 until done. 

The mortar approximation adds little to the cost of the calculation of the subdomain 
fluxes as N gets large, provided that the projection matrices are computed and stored at the 
beginning of a computation. The bulk of the computations occur in matrix multiplication 
operations, which require O(P) multiplications, where N is the order of the matrix. 
Assuming that the same number of points is used in each space dimension, the work 
required to compute the interior fluxes for the Euler gas-dynamics equations is O(M(16N + 
72)). The subdomain faces are one space dimension less and the work required to do step 
(3) of the algorithm above is O(N(16N + 132)). Thus, the work required to treat the 
interfaces relative to the interior work is asymptotically O( l/iV). 

5. Examples 
In this section, we use the semi-structured algorithm to compute solutions to both 

linear and non-linear hyperbolic problems. We first solve a two variable linear system 
using non-conforming topologies and compare the convergence to the convergence using 
alternative conforming grids. We then present an example where the solution is localized, 
and show that the computational cost for the same error can be reduced significantly by 
using the non-conforming interface treatment. 

We also solve three problems using the Euler gas-dynamics equations. The first 
problem is that of subsonic flow from a point source, for which there is an exact solution. 
The convergence rates of conforming and alternative non-conforming grids are compared. 
We then show that exponential convergence is obtained when solving the problem on a 
complex, multiply connected subdomain topology. The second problem is a steady 
subsonic flow over a circular bump. We show that exponential convergence of the entropy 
is obtained for both conforming and non-conforming approximations. The non-conforming 
approximation, however, takes only half the computer time for the same accuracy. Finally, 
as an example of a transonic flow problem we solve flow in an axisymmetric converging- 
diverging nozzle. The computed results for that problem are compared to experimental data. 

5.1 Linear Model Problem 

We begin by considering steady solutions to the system 

where 
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3v-u 2u + 4v 
Q=[:]. .=[ 3u-v 1, G = [ ~ ~ + ~ ~ ] .  

The source term is chosen so that the exact steady solution is 

sin(2la) sin(23cy) u = e  

v = eV 

Exponential convergence is observed for all three non-conforming grid topologies 
shown in Fig. lb. First, we consider order refmement on a subdivi 
[0,2] x [0,1]. Fig. 6 compares the L, errors of a conforming grid w 
with those of a non-conforming approximation. In both cases we observe exponential 
convergence. For order refmement alone, we would expect the error to be dominated by 
the lowest order approximation, and this is the case. 

Exponential convergence is also observed when a subdomain is subdivided. Fig. 7 
compares the error of a four subdomain conforming decomposition with a subdivided 
approximation. As before, we observe that the error is dominated by the Nrk order 
polynomial approximation. 

Finally, we consider a fully non-conforming subdivision, shown in Fig. 8. In this 
case, we choose a subdivision that is between two conforming approximations in its 
resolution. Again, we observe exponential decay of the error, and that error lies between 
the errors of the two conforming approximations. 
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Fig. 6. Comparison of conforming 
and non-conforming errors for 
order rejinement. 

Fig. 7 Comparison of L2 errors for 
conforming and non-conforming 
grids. 
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Fig. 8. Comparison of confoming and 
fully non-conforming errors. 

(a) Solutions (b) Conforming Grid (c) Non-conforming Grid 

Fig. 9. Solution and grids for (38) where local refnement is needed. 

One of the main reasons to use a non-conforming grid is to compute efficiently 
solutions where local refmement of the grid is needed. As an example, we compute the 
solution of (38) on the unit square where the source terms are chosen so that the steady 
solution is 

-15((x-1)i(y-I)) u = e  

v = e  -50(x2+y2) 

In this problem, the solution variations are concentrated in the upper left and lower right 
comers as shown in Fig. 9a. We solve the problem on two grids, also shown in Fig. 9. 
The non-conforming grid, which has increased resolution only where needed, has 44% of 
the number of grid points of the conforming grid when N = 10. 

Fig. 10 compares the convergence of the error for the two grids shown in Fig. 9. 
We find that the errors for both grids are the same to one digit. However, at N = 10, the 
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computational cost of the non-conforming grid computation is 46% of the cost of the 
conforming grid computation. Since, at best, we would expect the non-conformjng grid to 
take 44% of the time of the conforming one, we see that the overhead due to the mortar 
projections is only about 5%. 

-2 

Fig. 10. Convergence of linear mdel  problem 
(38) on the two grids shown in Fig.9. 

n 

3 4 5 6 7 8 91011 
N 

5.2 Euler Gas-Dynamics Equations 

5.2.1 Point source flow. We now consider the solution of the flow of a 
steady, irrotational gas exiting from a point, which can be solved exactly by a hodograph 
transformation [13]. The streamlines are radial and the level curves of the Mach number, 
pressure and density are circles centered on the source. We will compute this flow in two 
geometries. The first geometry represents flow in an expanding duct, where two 
streamlines are chosen as walls of the duct. The second geometry is that of a rectangular 
region with three cut out circles. 

The first geometry represents steady flow in an expanding two-dimensional duct 
with straight walls (Fig. 11). The lower wall was chosen to be the line y = 0 and the upper 
wall the line y = x tan(d6). The exact solution chosen was the one that takes on the Mach 
number M = 0.6 at the lower left comer. We compute this flow on the two grids shown in 
Fig. 11. An examination of the error using a single domain approximation indicates that 
most of the contribution of the error occurs near the lower left corner. Thus, we set up the 
non-conforming grid as shown in Fig. 1 1 b. For comparison, we also compute the solution 
on the conforming grid shown in Fig. 1 IC. The errors for the two grids are plotted in Fig. 
12, and are the same to one digit. 
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(a) Mach Contours 

-3 

-4 

(b) Non-conforming grid (c) Conforming grid 

Fig I I .  Difiser solution and non-conforming and conforming grids. 

Fig. I 2  Convergence of the density 
error for the two grids of Fig. I I .  

N 

Exponential convergence can be obtained on complex geometries, too, if the 
solution is smooth. In Fig. 13, we show the Mach contours and grid for the solution of the 
point source flow in a rectangular domain with three cut out holes. The point source was 
placed at the center of the bottom circle. This grid has fully non-conforming subdomain 
interfaces. The exact solution was used to compute the boundary conditions on all 
boundaries. Fig. 14 shows that the error converges exponentially with N .  
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Fig 13. Mach Contours and multiply connected grid for the point source flow. 
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Fig. 14. Convergence of the density 
for the grid in Fig. 13. 

5.2.2 Subsonic Flow Over a Circular Bump. Our next example is the 
solution of a Mach 0.3 subsonic flow over a circular bump. This flow was computed on 
two grid topologies, shown in Fig. 15. A wall boundary condition was specified along the 
bottom. At the left, right and top boundaries, the uniform free-stream condition was 
specified as the external input to the boundary Riemann problems. Initially, the free-stream 
solution was specified everywhere, and then the boundary conditions were imposed. A 
comparison of the pressure computed on the conforming and non-conforming grids is also 
shown on Fig. 15. 
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This problem does not have an exact solution. However, since the fiee-stream is 
irrotational and homentropic, the entropy must remain constant everywhere. That this is 
not true computationally is due to s rs. Fig. 16 shows the 
expo convergence of the entro wn in Fig. 15. 

Fig. 15. Pressure contours and grids for M = 0.3flow over a circular bump. The pressure 
contours for the conforming grid are plotted with dashed lines; the non- 
conforming solution is plotted with solid lines. 
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Fig. 16. Convergence of the entropy 
for the two grids shown in Fig. 15. 

3 4 5 6 7 8 91011 
N 

For N = 10, the non-confoming grid in Fig. 15 has 50% of the number of degrees 
of freedom of the conforming grid. We find that the CPU time for the non-conforming 
approximation to get to steady-state is 44% of the time required by the conforming one so 
the work required by the mortar projections is negligible. 

4.2.3 Transonic Flow in a Converging-Diverging Nozzle. Our final 
example is that of a transonic flow in an axisymmetric converging diverging nozzle. We 
use the nozzle of Cuffel et al. [ 141. The nozzle has a converging section with half angle of 
45" and a diverging section of 15". The experimental tests were done in air with a 
stagnation temperature of 54-0 R and a stagnation pressure of 70 psia. The nozzle geometry 
and grid are shown in Fig. 17. We have increased the resolution in the neighborhood of 
nozzle wall curvature singularities by subdivision of a conforming grid (See [l]). 
Boundary conditions and scaling were treated as in ref. [l]. 
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Fig. I7 Nozzle shape and grid for transonic flow computation 

I * M = 0.6 
M=I.O 

o M =  1.0 
CI M=1.8 

Fig. 18. Computed and measured (symbols) Mach contours in the nozzle. 

Results computed for the nozzle are shown in Figs. 18-20. Contours of the Mach number 
are compared to the experimentally determined positions in Fig. 18. Wall values of the 
pressure are and Mach number are shown in Figs. 19 and 20 for different subdomain 
resolutions. 
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Fig. 19. Wall pressure of the converging-diverging nozzle 
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Fig. 20. Wall Mach number for the converging-diverging nozzle. 
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6. Summary 
It was difficult to do local grid with the original staggered-grid 

multidomain approximation[ 11. That method d subdomains to intersect either along 
a full side or at a single point. In addition, along adjoining faces the approximation’s 
polynomial orders had to be the same. This made it impossible to subdivide a subdomain 
or to increase locally the polynomial order as necessary to resolve a feature in the 
solution. 

In this paper, we have described a semi-structured method th the staggered 
grid scheme interior to subdomains. It relaxes the restriction that the be continuous 
at subdomain interfaces and allows for non-conforming interfaces. This makes it possible 
to use a general quadrilateral tiling of a computational domain. Subdomains can be 
subdivided as necessary. Within each subdomain the polynomial order can be set 
independently of its neighbors. More generally, subdomains need intersect only partially 
along a side. 

In the semi-structured version, the interfaces are treated by a mortar method. The 
solutions along subdomain faces are first projected onto a one dimensional construct called 
a mortar. Along the mortar a unique flux is computed as if the approximation is 
conforming. That flux is then projected back onto the subdomain faces to be used to 
update the solutions within the subdomains. Asymptotically, the work involved in this 
process is small when compared to the work required to update the solutions in the interiors 
of the subdomains. The mortar approximation is designed so that the method is globally 
conservative. 

The method has been applied to both linear and non-linear smooth problems for 
which exact solutions are known. In all cases, spectral convergence was observed. The 
advantage of being able to locally refine the grid was also seen in the reduced cost of the 
non-conforming approximations. 
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